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Abstract
Dense hydrogen is studied in the framework of wave packet simulations. In this
semi-quantal method the electrons are represented by wave packets which are
suitably parameterized, e.g. Gaussians. The time evolution of the system and
the equilibrium properties are obtained with the help of a variational principle
and by Monte Carlo sampling, respectively. A transition from a molecular
to a metallic state is observed. The wave packets become delocalized and
the electrical conductivity increases sharply. The phase diagram is calculated
in a wide range of the pressure–density–temperature space. In the transition
from the molecular to the metallic state the density increases in agreement with
recent reverberating shock wave experiments.

PACS numbers: 52.65.Yy, 02.70.Ns, 05.70.Ce, 62.50.+p

1. Introduction

Although hydrogen is the simplest of all chemical elements and the Coulomb interaction
between the constituents has been known for more than two centuries, its physical properties
under extreme conditions still constitute a great challenge to many-body physics. A
transition to a metallic phase has been predicted by extrapolation of experimental results
[1]. Complementary shock wave experiments show direct evidence for such a transition [2, 3].
However, the strong compression observed in earlier measurements with the Nova Laser [4]
has not been confirmed in more recent experiments with the Z machine [5] or with explosives
[6]. The equation of state of hydrogen determines the structure of brown dwarfs and giant
gas planets [7, 8]. It must also be known for the production of energy by inertial fusion of
deuterium pellets [9].

The possibility of a metalization of hydrogen at high densities was discussed already in
1935 by Wigner and Huntington [10]. Since then a large number of theoretical methods have
been employed in this connection. On one hand, there is the chemical picture [11] where
the free energy of a system consisting of components, such as H2, H, protons, electrons, . . . ,
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is minimized [7, 12]. This requires effective interactions, pair correlations, exchange parts
and polarization corrections as input [13]. In contrast the ‘ab initio’ methods start on a
more fundamental level, but for practical solutions approximations must be made. Usually
the attention is focused on the electrons while the nuclei are supposed to move classically
because of their large mass. In tight-binding molecular dynamics (TBMD) the forces on
the nuclei are obtained from the total energy of bound electrons whose wavefunctions are
parameterized to fit the H2-molecule and other suitable data [14]. Alternatively the electron
energy is calculated in the local density approximation (LDA) of the density functional theory
(DFT) [15, 16]. In recent work the generalized gradient approximation (GGA) is used for the
exchange and correlation energies, see, e.g. [17–19]. These are low-temperature methods as
long as the underlying density functionals are independent of the temperature. The density
can also be calculated by a Monte Carlo evaluation of path integrals (PIMC). Because of
the fermion sign problem the paths are restricted in order to avoid the crossing of nodes
of the free system [20]. So this RPIMC is rather a high-temperature method [21]. More
recent reformulations aim at a representation of the exchange problem in the form of a
Slater determinant [22]. To close the methodical gap at intermediate temperatures, coupled
electronic–ionic Monte Carlo (CEIMC) calculations have been made [23]. These use the
Born–Oppenheimer approximation and require a careful choice of trial functions. Some
currently most favored implementations of density functional and quantum Monte Carlo
many-body methods have been presented on this conference, see, e.g., [24, 25].

Here we present results from wave packet (WP) simulations for the metalization of
hydrogen. In this method [26, 27], the electron wavefunctions are represented by moving
Gaussians of variable width. In earlier application to dense matter various compromises
were made in respect to the fermion problem which limited the regime of application
[28, 29]. In the present calculations, the anti-symmetrization is fully implemented
[30, 31]. This prevents an unphysical growth of the overlap of the wave packets and thus
the growth of their widths. There is no more need for introducing an ad hoc potential
to limit the spread of the wave packets. The focus of the present paper lies on results
which have not been published previously. While the method is briefly described in
section 2 we discuss in section 3 some new results for the metalization of hydrogen. Our
conclusions are presented in section 4.

2. Wave packet simulations

A cubic simulation box of length L containing N electrons and protons is periodically continued
to represent the bulk system. The protons are treated classically because of their large mass.
The electrons are described by the fully anti-symmetrized product

��q(�x1, . . . , �xN, t) = 1√
N

∑
σ∈P

sgn(σ )

N∏
k=1

ϕ
k,�qk

(�xσk

)
(1)

of the single-particle Gaussian wavefunctions

ϕk,�q(�x, t) = ei�q·�x ∑
�n∈Z3

exp

[
−

(
3

4γ 2
k

− ipγk

2γk

)
(�xk − �rk − �nL)2 + i�pk · (�x − �rk − �nL)

]
(2)

depending on the Bloch-momentum �q and the parameters {vk(t)} = {�rk(t), γk(t), �pk(t),

pγk
(t)} representing the position and the width of the Gaussian �rk(t), γk(t), respectively, and

their conjugate momenta �pk(t), pγk
(t). As these basis states are not orthonormal

〈ϕk,�q |ϕl, �q′〉 = (O)klδ
3(�q − �q ′), (3)
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a (formal) orthonormalization

|ϕ̃〉 = Y 1/2|ϕ〉 (4)

with Y = O−1 allows the evaluation of all anti-symmetrized matrix elements of the hydrogen
Hamiltonian

Ĥ = T̂ion + t̂el + V̂ion−ion + V̂ion−el + V̂el−el (5)

with Coulomb interactions V̂ in Fourier space by numerically robust O(N3) matrix operations.
For example, for the electron kinetic energy

Ekin =
N∑

k=1

∫
d3g〈ϕ̃k,�q |t̂ |ϕ̃k,�q〉 = Tr (t · Y) + EBloch. (6)

Here, EBloch is a grid energy which depends on the ratio of the width γ to the box size L [31].

2.1. Wave packet molecular dynamics (WPMD)

For the dynamics of the system, the time evolution of the parameters vk(t) is obtained from the
time-dependent variational principle minimizing the action

∫
L[�,�∗] dt with the Lagrangian

L[�,�∗] = 〈�(t)|ih̄ ∂

∂t
− Ĥ |�(t)〉. (7)

With the expectation value H{v} = 〈�|Ĥ |�〉 and the norm matrix N with elements

(N )ij = −2h̄ Im

〈
∂

∂vi

�

∣∣∣∣ ∂

∂vj

�

〉
(8)

there result non-symplectic equations of motion for the parameters

v̇i =
n∑

j=1

(N−1)ij
∂H
∂vj

. (9)

Here the propagation of the wave packets is treated in real time in some analogy to variational
calculations of the density at finite temperatures [32]. The variational density matrix (VDM)
serves as a suitable input to RPIMC calculations [21].

2.2. Wave packet Monte Carlo simulations

The equilibrium properties at a certain temperature T = (βkB)−1 can be obtained by Monte
Carlo sampling. For that purpose one conceives a transformation to canonical coordinates
{v} → {u}

d�u = B d�v (10)

with

BN−1B =
(

0 11
−11 0

)
(11)

for which the equations of motion are symplectic. In these coordinates the expectation value
of a dynamical variable A is

Ā = 1

Z

∫
dMu e−βH{u}A{u} (12)

with Z = ∫
dMu e−βH{u}. As dMu = |detB| dMv = (detN )

1
2 dMv

Ā = 1

Z

∫
dMv (detN )

1
2 e−βH{v} A{v} (13)
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with Z = ∫
dMv(detN )

1
2 e−βH{v}. This serves as a starting point for the calculation

of equilibrium properties by wave packet Monte Carlo simulations [30]. Without anti-
symmetrization the modified volume element in expression (13) would be equal to 1. As
the overlap of the wave packets increases with their width the presence of the modified volume
element prevents an unphysical growth of the widths of the wave packets.

2.3. Virial theorem

The key observable in most measurements is the pressure P. In a Coulomb system of volume
V , it can be expressed with the help of the virial theorem

P = 1

3

(
2
Ēkin

V
+

Ēpot

V

)
(14)

through the expectation values of the kinetic and potential energies of the particles [33]. While
being formally simple, this expression depends crucially on a subtle balance between kinetic
and potential energy. For a test of the WP method, a comparison with the exactly known
Hartree–Fock solution for the free electron gas and a simple one-component plasma (OCP)
model for metallic hydrogen has been made [30, 31].

3. Metalization of hydrogen

3.1. Isothermal changes

The diamond anvil experiments for the isotherms of hydrogen and deuterium at room
temperature [1] show hardly any difference between both isotopes, our simulations (typically
N = 250) are therefore done for hydrogen only. The measurements up to a density
N/V = n = 0.72 × 1030 m−3 show a smooth behavior of P(n), with no indications of
a phase transition. Here earlier results of our WP simulations [30, 31] show that the slope
of P(n) levels off near n = 0.9 × 1030 m−3. At this density the average width of the wave
packets jumps rather suddenly, the electrons delocalize and the system becomes conducting.
The electrical conductivity is calculated with the help of WPMD simulations from the current–
current autocorrelation function

σ = β

3L3

∫ τ→∞

0
dt�j(t) · �j(0). (15)

At the critical density the conductivity jumps by some orders of magnitude. The transition
to metallic state can also be visualized in terms of the spatial distribution of the particles.
An inspection of the simulation box at n = 0.2 × 1030 m−3 shows a molecular sc crystal
(a cubic structure is favored by the shape of the simulation box) with the electrons localized
between the two protons of an H2 molecule. Around n = 0.6 × 1030 m−3 the crystal begins
to dissolve forming a molecular fluid. At n = 0.9 × 1030 m−3 the protons form a cubic bcc
lattice with electrons moving freely between the sites. These qualitative pictures are supported
by calculations of the pair distribution functions. At n = 0.2 × 1030 m−3 there is a strong
nearest-neighbor peak at the bond length 0.8×10−10 m of the protons in the free H2 molecule.
The long-range order is washed out because of thermal vibration and molecular rotation. In
the denser fluid regime these structures disappear until they re-emerge at higher densities
n = 0.9 × 1030 m−3, indicating the long-range metallic order. The electron-pair distribution
has a peak near 0.4 × 10−10 m at n = 0.2 × 1030 m−3, i.e. the electrons are concentrated
between the two protons of the H2 molecule. With increasing density this distribution function
becomes flat. There is no enhancement near zero distance, which indicates that there are no
atoms.
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Figure 1. The hydrogen isochore P(T ) at n = 0.2×1030 m−3: compared are results from WPMC
simulations (filled circles), PIMC simulations [21] (open circles), fluid variational theory [34]
(FVT, triangles), TBMD simulations [14] (open squares) and the ideal gas isochore
(dashed-dotted).

3.2. Isochoric changes

In figure 1 we show an isochore P(T ) at n = 0.2 × 1030 m−3. While the results from
PIMC [21], fluid variational theory (FVT) [34] and TBMD [14] are rather featureless, the
WPMC simulations show a sudden drop in pressure near 4000 K which is associated with
an increase of the width of the wave packets. A similar feature has been observed in earlier
PIMC simulations near 10 000 K [20].

Because of the Maxwell relation (∂P/∂T )V = (∂S/∂V )T we expect that this decrease
in the isochoric pressure corresponds at a constant temperature to an increase of the entropy
with density, i.e. a transition to a less-ordered, denser metallic state. The negative pressure
at T = 4000 K indicates an instability. There should be a phase separation with metallic
drops immersed in a molecular fluid. Obviously such an inhomogeneous system cannot
be properly described in the present simulations. At temperatures of T = 3000–4000 K,
the proton–proton pair distribution function shows a moderately coupled proton OCP. At
T = 3000 K, the electron–proton pair distribution is moderately enhanced near zero indicating
the presence of a small fraction of atoms or atom-like structures during the change from the
molecular regime at T = 300 K to the practical free-electron gas at T = 4000 K.

3.3. Phase diagram

The equilibrium properties of dense hydrogen were calculated by WPMC simulations in
a broad range of parameters where a plasma phase transition, i.e. a first-order transition
from a molecular to a metallic state, has been predicted, see, e.g. [8]. In the density range
n = (0.1–0.9) × 1030 m−3 and temperatures up to T = 4000 K emerges a clear separation of
a molecular phase (low T and low P) and a metallic phase [30, 31]. At the border between
both regimes both phases coexist, the metallic phase being denser as the molecular one, as
discussed above. Isolated points of the phase boundary curve have also been obtained by other
methods [15–17], see, e.g. figure 9 of [31]. In figure 2 we show isotherms in the n − P plane
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Figure 2. Hydrogen isotherm P(n) obtained by WPMC simulations at T = 1000 K, 2000 K,
3000 K and 4000 K. Dots correspond to a molecular system, open circles to the metallic state. The
stars indicate experimental results from a quasi-isentropic compression in this range of densities,
temperatures and pressures [3].

which demonstrate a first-order transition from a molecular to a metallic state. Experimental
evidence for such a transition in this range of densities, temperatures and pressures has recently
been obtained by a quasi-isentropic compression of a deuterium plasma in reverberating shock
wave experiments [3]. We included these measured data in the plot of our T = 1000 K
isotherm. The coexistence region deduced from our simulations resembles very much the
banana-like domain of a first-order insulator–metal transition [35] shown in figure 3.

3.4. Hugoniots

Unfortunately static experiments are increasingly difficult at high temperatures and pressures
even for deuterium because diffusion limits the strength of the anvils. In shock wave
experiments [4–6] there arose controversies in regard to the interpretation of the measurements:
are the shock fronts planar, has an equilibrium been reached, etc? The conservation of mass,
momentum and energy yields the Hugoniot relation for the change in internal energy, pressure
and density across a shock front. The (desired) equation of state translates this into a density
compression and an increase in pressure and temperature.

In figure 4 (left panel) we show the pressure as a function of the density compression
for deuterium. The wave packet results [30] agree quite well with those of the FVT [36] and
the linear mixing model [37] both at low and at high pressures, but the compression is even
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Figure 3. Coexistence region from the present WPMC simulations (filled circles for the molecular
and open circles for the metallic boundary) compared with the coexistence region predicted in [35].
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Figure 4. P(n) under Hugoniot conditions. (Left panel) full curve: Sesame [38]; dashed-dotted
curve: linear mixing [37]; dotted curve: FVT [36]; full squares: Z machine [5]; dots: Nova Laser
[4]; crosses: explosives [6]; open circles: WPMC [30]. (Right panel) temperatures calculated in
WPMC [30].

larger than in the NOVA experiments [4] in the intermediate range around 100 GPa. These
became doubtful as more recent experiments at the Z machine [5] and with high explosiives
[6] show a more modest compression which agrees with the Sesame table [38]. In the right
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panel of figure 4 we show the temperatures reached along the Hugoniot according to the wave
packet simulations. The disagreement with the data [5] and other subsequent calculations,
e.g. [7, 18, 19], raises the question whether the present parameterization of the wave packets
by the Gaussians given in equation (2) may be too rigid for a proper exploration of the
many-body Hilbert space. The ground-state properties of simple systems such as H, H2 and
He have been discussed in [30]. In many-body systems at temperatures above 5000 K nodes
in the trial function may be required. Rather than generalizing the trial functions one may
attempt to modify the interactions. We note in this connection that a satisfactory agreement
with the experiments [5, 6] is obtained by simplified wave packet simulations, where the
explicit anti-symmetrization is replaced by a Pauli exclusion energy depending on the overlap
of the wave packets and three parameters which were chosen to optimize small molecules like
CH4 [39].

4. Summary

In our fully anti-symmetrized wave packet simulations we have shown a first-order phase
transition from molecular hydrogen to a metallic state. The following observables were
investigated: isotherms P(n), isochores P(T ), pair distribution functions and electrical
conductivities. The metallic phase has a higher density than the molecular phase. Further
work on the compressibility under Hugoniot conditions is desirable.

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (06 ER 145)
and by the Gesellschaft für Schwerionenforschung (GSI-ER/TOE).

References

[1] Loubeyre P, Occelli F and LeToullec R 2002 Nature 416 613
[2] Nellis W J, Weir S T and Mitchell A C 1999 Phys. Rev. B 59 3434
[3] Fortov V E et al 2007 Phys. Rev. Lett. 99 185001
[4] Collins G W et al 1998 Phys. Plasmas 5 1864
[5] Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R and Deeney C 2004 Phys. Rev. B 69 144209
[6] Boriskov G V, Bykov A I, Ilkaev R I, Selemir V D, Simakov G V, Trunin R F, Urlin V D, Shuikin A N and

Nellis W J 2005 Phys. Rev. B 71 092104
[7] Chabrier G, Saumon D, Hubbard W B and Lunine J I 1992 Astrophys. J. 391 827
[8] Chabrier G, Saumon D and Potekhin A Y 2006 J. Phys. A: Math. Gen. 39 4411
[9] Bennett G R et al 2002 Phys. Rev. Lett. 89 245002

[10] Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764
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